A Simulation Study Comparing Two Methods of Handling Missing Covariate Values when Fitting a Cox Proportional- Hazards Regression Model

نویسنده

  • Ali Satty
چکیده

Missing covariate values is a common problem in a survival data research. The aim of this study is to compare the use of the multiple imputation (MI) and last observation carried forward (LOCF) methods for handling missing covariate values in the Cox proportional hazards (PH) regression model. The comparisons between the methods are based on simulated data. The missingness mechanism is assumed to be missing at random (MAR). Missing covariate values are generated under different missingness rates. The results from both methods are compared by assessing the bias, efficiency and coverage. The simulation results in general revealed that MI is likely to be the best under the MAR mechanism. A Simulation Study Comparing Two Methods of Handling Missing Covariate Values when Fitting a Cox ProportionalHazards Regression Model

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study

BACKGROUND The appropriate handling of missing covariate data in prognostic modelling studies is yet to be conclusively determined. A resampling study was performed to investigate the effects of different missing data methods on the performance of a prognostic model. METHODS Observed data for 1000 cases were sampled with replacement from a large complete dataset of 7507 patients to obtain 500...

متن کامل

Pattern-Mixture model of the Cox proportional hazards model with missing binary covariates

When fitting the Cox proportional hazards model with missing covariates, it is inefficient to exclude observations with missing values in the analysis. Furthermore, if the missing-data mechanism is not Missing Completely At Random (MCAR), it may lead to biased parameter estimation. Many approaches have been suggested to handle the Cox proportional hazards model when covariates are sometimes mis...

متن کامل

تحلیل درستنمایی ماکزیمم مدل رگرسیون لجستیک در حالتی که داده های متغیرهای پیشگو کامل نیستند ولی متغیرهای کمکی وجود دارند

Background and Objectives: Missing data exist in many studies, e.g. in regression models, and they decrease the model's efficacy. Many methods have been suggested for handling incomplete data: they have generally focused on missing outcome values. But covariate values can also be missing.Materials and Methods: In this paper we study the missing imputation by the EM algorithm and auxiliary varia...

متن کامل

Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study

BACKGROUND There is no consensus on the most appropriate approach to handle missing covariate data within prognostic modelling studies. Therefore a simulation study was performed to assess the effects of different missing data techniques on the performance of a prognostic model. METHODS Datasets were generated to resemble the skewed distributions seen in a motivating breast cancer example. Mu...

متن کامل

Essays on the Assumption of Proportional Hazards in Cox Regression

Persson, I. 2002. Essays on the Assumption of Proportional Hazards in Cox Regression. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences 110. 36 pp. Uppsala. ISBN 91-554-5208-6. This thesis consists of four papers about the assumption of proportional hazards for the Cox model in survival analysis. The first paper compares the haz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014